

		300				
	and the second	NIC			 *******	
G.	a Ari		description of the			
	109					
			100			
6.				White .	 _ 185 mm to	
) Y		10:		91 7 1	 ••••••	
	Iall	15.	And the State of the	Wit by		- H

| Semester B.Sc. Degree (CBCSS – Supple.) Examination, April 2021 (2014-2018 Admission) COMPLEMENTARY COURSE IN MATHEMATICS 2C02 MAT-CS: Mathematics for Computer Science – II

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- Give the reduction formula for ∫tanⁿ xdx.
- 2. If the two curves $y_1 = \phi_1(x)$ and $y_2 = \phi_2(x)$ intersect at (a, c) and (b, d) and lie between these points, then what is the area between these curves?
- 3. Give an example for a 3 × 3 upper triangular matrix.
- 4. If $A = A^T$, then it is said to be a _____ matrix.

S(BB - A) (BS - X) = SVBC every office of the entire value of SECTION – B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Evaluate ∫cosec⁵dx.
- 6. Find the whole area included between the curve $x^2y^2 = a^2(y^2 x^3)$ and its asymptotes.
- 7. Find the perimeter of the cardioid $r = a(1 \cos \theta)$.
- 8. Find the volume of the solid generated by the revolution of the tractrix $x = a\cos t + \frac{1}{2} \log \tan^2 \frac{t}{2}$, $y = a \sin t$ about its asymptotes.

Padve Danie av. 86

- 9. Evaluate $\int_0^{\pi} \int_0^{x} \sin y \, dy \, dx$.
- 10. Find the volume of the solid whose base is in the xy-plane and is the triangle bounded by the x-axis, the line y = x and the line x = 1 while the top of the solid is in the plane z = x + y + 1.
- 11. Let A be a 2×2 matrix. If it is symmetric as well as skew symmetric, then what is A and why?
- 12. Are the vectors (1, 2), (3, 4) linearly independent? Why?
- 13. If A, B are both orthogonal, then what we can say about AB? Why?

SECTION - Chammics market system evid

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. If $I_n = \int_0^a (a^2 x^2)^n dx$ and $n \neq 0$ prove that $I_n = \frac{2na^2}{2n+1}I_{n-1}$.
- 15. Find the perimeter of the loop of the curve $9ay^2 = (x 2a)(x 5a)^2$.
- 16. Find the rank of A = $\begin{pmatrix} 1 & 3 & 1 \\ 2 & 5 & 3 \\ 3 & 1 & 1 \end{pmatrix}$ by row reduction.
- 17. For the orthogonal matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, verify that $A^{-1} = A^{T}$.
- 18. Verify the Cayley-Hamilton theorem for $A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$.
- 19. Consider the systems of linear equations : x + y = 3, 4x + 3y = 4 and

$$5x + 4y = 7$$
, $9x + 7y = 11$. Are they row equivalent? Why?

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- Find the ratio of the two parts into which the parabola $2a = r(1 + \cos\theta)$ divides the area of the cardioid $r = 2a(1 + \cos\theta)$.
- If the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ revolves about the x-axis, show that the volume included between the surface thus generated, the cone generated by the asymptote and two planes perpendicular to the axis of x, at a distance h apart is equal to that of a circular cylinder of height h and radius b.
- 22. Solve the system of linear equations:

$$2a + 3b + 4c + 5d = 6$$

$$a - b + 2c - 4d = 4$$

$$a + c - 8d = 5$$

by row reduction. How many solutions the system have? Why?

23. Diagonalize the matrix $A = \begin{pmatrix} -6 & 4 \\ 3 & 5 \end{pmatrix}$.